Nonnegative Bayesian nonparametric factor models with completely random measures
نویسندگان
چکیده
Abstract We present a Bayesian nonparametric Poisson factorization model for modeling dense network data with an unknown and potentially growing number of overlapping communities. The construction is based on completely random measures allows the communities to either increase nodes at specified logarithmic or polynomial rate, be bounded. develop asymptotics size derive Markov chain Monte Carlo algorithm targeting exact posterior distribution this model. usefulness approach illustrated various real networks.
منابع مشابه
Bayesian nonparametric mixed random utility models
Wepropose amixedmultinomial logit model, with themixing distribution assigned a general (nonparametric) stick-breaking prior.Wepresent aMarkov chainMonte Carlo (MCMC) algorithm to sample and estimate the posterior distribution of the model’s parameters. The algorithm relies on a Gibbs (slice) sampler that is useful for Bayesian nonparametric (infinite-dimensional) models. The model and algorith...
متن کاملHierarchical Models, Nested Models and Completely Random Measures
Statistics has both optimistic and pessimistic faces, with the Bayesian perspective often associated with the former and the frequentist perspective with the latter, but with foundational thinkers such as Jim Berger reminding us that statistics is fundamentally a Janus-like creature with two faces. In creating one field out of two perspectives, one of the unifying ideas emphasized by Berger and...
متن کاملBayesian nonparametric models of sparse and exchangeable random graphs
Statistical network modeling has focused on representing the graph as a discrete structure, namely the adjacency matrix, and considering the exchangeability of this array. In such cases, the Aldous-Hoover representation theorem (Aldous, 1981; Hoover, 1979) applies and informs us that the graph is necessarily either dense or empty. In this paper, we instead consider representing the graph as a m...
متن کاملBayesian Nonparametric Models
‘ We have been looking at models that posit latent structure in high dimensional data. We use the posterior to uncover that structure. ‘ The two main types are mixtures (and variants, like mixed-membership) and factor models (like PCA, factor analysis, and others). ‘ A nagging concern for these methods is model selection—how do I choose the number of mixture components? the number of factors? ‘...
متن کاملSpatial Nonparametric Bayesian Models
The prior distribution is an essential ingredient of any Bayesian analysis, and it plays a major role in determining the final results. As such, Bayesians attempt to use prior distributions that have certain properties. Perhaps the main property is a desire to accurately reflect prior information, i.e., information external to the experiment at hand. We would supplement this vague property with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2021
ISSN: ['0960-3174', '1573-1375']
DOI: https://doi.org/10.1007/s11222-021-10037-3